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ASYMPTOTIC PROPERTIES OF STOCHASTIC APPROXIMATIONS
WITH CONSTANT COEFFICIENTS

Harold J. Kushner and Hai Huang

Abstract: Asymptotic properties (as a -
~ 0, n + m) of the Stochastic

Approximation (SA) algorithm

(*) X~,,,1 = Xn 
+ ah(Xn,~n

)

are obtained , where h is not necessarily additive in 
~n

• If

Eh(X s~ n
) = g(x) and x = g(x) is asymptotically stable about a

solution x.~ = 0, then the asymptotic properties of {(Xn-O)/vc} E

{U~} are developed . In particular , it is shown that (as a ÷ 0) a natural

continuous parameter interpolation of {U~} converges weakly to a

linear diffusion process , from which the asymptotic properties of

{U~} and {Xn} for small a can be obtained . The conditions on

are reasonable from the point of view of the usual applications

to adaptive systems and identification . These results seem to be

the first of their type for SA’s with constant coefficients. Some

rate of convergence results for classical SA’s are improved. Also ,

an application of (*) to a problem of tracking the time varying

parameters of a linear system is discussed , and a limit theorem

obtained. Because in the usual practical implementations of SA to

problems in systems theory, the gain sequence {an} does not

normally go to zero (due to considerations of robustness and

non-stationarities), these results are of particular importance.

________________________________________________



ASYMPTOTIC PROPERTIES OF STOCHASTIC APPROXIMAT IONS
WITH CONSTANT COEFFICIENTS

1. Introduction

In (1] rates of convergence for stochastic approximations

(SA) of the type

(1.1) X~,,,1 = Xn + anh(Xn,~ n
)

were treated , where {an} is a sequence of positive numbers

tending to zero and such that E a~ = 
~~~~, and is a sequence

of random variables. In particular , we used an =

o < ~~ < 1, although the proofs could have been adapted to deal

with more general sequences. As has been usual in rate of con-

vergence studies for SA’ s, it was assumed that there is a vector
o such that X~ + 0 w.p.l , and that {

~~
} is a stationary

sequence. Unlike previous works on the rate of convergence

prob lem, [11 did not assume that h is additive in 
~~ 

the

additivity assumption is not satisfied by many important applica-

tions in systems theory .

In this paper , we obtain analogous results concerning

asymptotic behavior and rate of convergence for the case where

a~ — a, a small constant . The algorithm will be written in the

form (1. 2), wher e f and g are measurable functions ,further properties

of which will be given below.

—~~~~~~~ ~~~~~~ - -~~~~- — ~~~~ --- k 
— 

-~~~



r - -~~ ‘~~~~~~~~~~~~~~~ r T - ,T j ~~~~ ,tT ~~~~~~~~~~~~~ 
_____

‘ 

~~~~~~~~~~~~~

“

-2-

~~~ = X~ + ah(X~ ,~~ ) E X~ + ag (X~ ) + af(X~ ,~~)

(1.2)
X~ = X0, independent of a

Algorithm s of the type (1.2) are particularly important in applica-

tions tu both identification theory and adaptive systems theory,

and for a version of this problem , the results are both specialized

and extended in Sections 6 and 7; in Section 7 {~~} is non-

stationary , and the “parameter tracking problem” is dealt with. In

such applications , h is not additive in the noise ~~~~~~ , and the

{~~ } may not be a stationary sequence. Furthermore , in

engineering practice there is usually a constant a > 0 such

that either {an} tends to a or else that an E a, although

almost all the existing analysis of (1.1), (1.2) (indeed of all SA

methods (2], [3], (4]) assume a~ + 0. The case (1.2) is more

robust than (1.1) in the sense that it can better accommodate

non-stationarities and modelling errors , and it is often the form

used in applications .

In general , little is known about the sequence (1.2).

Normally, {X~} does not converge w.p.l, and if {
~~

} is non-

stationary it may not even converge in distribution. Under

various assumptions, (1.3) (a specialization of (1.2)) has been

treated in the adaptive process literature . Here ’ B is a vec tor
valued bilinear form and A ,C are matrices (Widrow et al [5],

Senne 16], Davisson [71).

(1.3) X~~1 = X~ + aB(X a,~~ ) + aC~~ + aAX~ .

~ I~I~ iii~~~:~ ~~II~
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Results such as ITI~ E IX
a
~
2 

-
~ 0 as a ~ 0 were obtained. Our

-~~~ n
method works under broader conditions (we assume bounded noise;

for a form of (1.3), [71 dealt with unbounded but rn-dependent

Gaussian noise and used a trick similar to the concatenation of

m steps into one and then exploitation of a result for in-

dependent {~~ })and yields a much more complete picture of the

process behavior. As in [1], [3], weak convergence methods are

used.

Define U~ = (X~ -0)//~ and t~ 
= an. Let Na be a

sequence which goes to as a -‘ 0, and define the piecewise

constant continuous parameter process Ua(.) by Ua(O) =

U~~, U
a(~ ) U

~+N 
in [na ,(n+l)a). We prove that {Ua(.)}

converges weakly to the Gaussian diffusion (5.1) as a + 0, where

R is defined below (5.1) and i~ = 
~~(°). The results yield

stability of the process (1.2) for small a, together with the

asymptotic (as a + 0) error variances and correlation functions

(of Ua(.)). It seems to us that the general approach is quite

straightforward and relatively easy to use. The weak convergence

and stability ideas yield a lot of intuitive insight into the

relations between the structure of an algorithm and its asymptotic

properties. Since it makes no sense to assume convergence

X~ • some 0 a priori , some stability analysis is needed. For

the special adaptive process case when (1.2) reduces to (1.3),

th ~ situation is simpler , and we obtain better results in

,.un 7.

In Section 2, assumptions for the general problem are

stated . Tightness of {U~ , n > Na) is obtained in Section 3.
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Section 4 contains some remarks concerning special cases , and

on the use of the methods of this paper to extend known convergence

and rate of convergence results for SA’s of the type (1.1) when

the SA sequence converges in probability rather than (the usual

assumption) almost surely.

The main limit theorem is given in Section 5, and Section 7

treats the special case (1.3) when the statistics of {~~ } are

time varying and both ~i and R are functions of time . Some

of the arguments are similar to those in Ll], and we formulate

the problem here so as to use the earlier results whenever

possible.

2. Assumptions for Section 3

K denotes an arbitrary real number (independent of

x,~~,n,a) and rts value may change from usage to usage. G
~~

(x)

denotes the Hessian matrix of a function G and E~ denotes

conditioning on E~~, i < n.

Remarks on the assumptions. In order to get rate results

(i.e., limit results for Ua(.) or U~ , as a + 0, n + 
~) we

obviously require that the tails of {X~} converge in some sense

as a + 0. This requires some stability properties of the

“deterministic” part of (1.2), in particular that-a solution

x,~ = constant = 0 of the ODE x = g(x) is globally asymptotically

stable. For notational convenience in Section 3 and in the

assumptions , we set 0 0 there , without loss of generality .

In Section 4 on, we reintroduce 0 . It seems best to deal with

L  
_ _ _

~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ :: _ _ _ _ _ _ _ _  _ _ _ _
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the stability problem by introducing a Liapunov function V(”)

for x = g(x). Conditions (A6)-(A7) below are often guaranteed by

various forms of strong mixing conditions on {
~~ ). In the usual

applications to identification and adaptive systems theory [5] , [8]

there is an asymptotically stable A such that g(x) = Ax and

an affine function f() such that f(x,E ) = f(x)E~. Then V(-’)

is chosen to be a quadratic form and (A4)-(A5) hold , and so do

(A6) - (A7) under simple conditions on {
~~ } .  See Section 7 for more detail.

Al. For each a, {~~ } is a bounded random sequence and

E f(X
~~n
) = 0, all x ,a,n.

A2. g(O) = 0, 0 = 0 (here and in Section 3, for no-

tational convenience only) g(.) and f(.,.) are measurable.

The first and second partial x-derivatives of f(.,c) ~ pJ g(.) are

continuous for each ~~~~.

A3. There is a non-negative three times continuous differ-

entiable Liapunov function V() for x = g(x) such that

V(x) > 0, V(x) + 
~~~ l x i ÷~~~, V(x) = x ’Qx + o( !x1 2) for some

positive definite matrix Q.

A4. For some real y > 0, V~(x)g(x) < -YV(x).

AS. V
~~
(.) is uniformly bounded and f(x,E)~

2 
+

I g( x ) 1 2 
< K(V(x)+l).

A6. ~ aIE~V~(x)f(x ,~~ )i < aK(V(x)+l).
i—n



-6-

A7. 
~~~~~~~~~~~~~~~~~~~~~ 

< aK ,

1 aIE~ ( V
~
(x)f(x,

~~
))
~~

j < aK(V~~
2(x)+l).

(AS) implies that f and g grow at most linearly in x.

3. Tightness of {U~ small a, n > Na}

Fix K0 > 0. Let Na denote any integer such that

exp(
~
(a1/Z)Na) < K~a. We have the n > Na requirement because

of the effect of the initial condition . In general , {X~/~’~, n > 0,

small a) will not be tight unless X0 
= 0. So we wait

(Na steps) until the effects of the initial condition are small.

In any case , we are concerned with the tail of {U~} for

small a. For the special case (1.3), it is possible to center

the sequence {U~} in such a way that (U~ , n > 0) can be

dealt with (then Na = 0 is used) and a better result obtained .

See Section 7.

Theorem 1. Under (A1)-(A7), ~~~ small a, n > Na) 1~.
tight.

Proof. Again , K defines a constant whose value may change

from usage to usage. Define (well-defined by (A6) , recall t~ = an).

(3.1) V~(x,t~) = a ~~E~V~(x)f(x ,~~)

and def ine

L 
- 

_ _ _ _  

~~~~~~~~

“ 
~~~~~~‘
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(3.2) Va(X ,~~) = V(x) + V~ (x~t~).

The proof uses a Liapunov function approach with Liapunov function

~a• The reason for the introduction of the V~ term will be

clear below; basically, it is useful owing to the non-independence

of the {~~ } and allows us to “average” out their effects. In-

deed, V~ = 0 when the are independent. We first evaluate

E~V
a (X~+1,~~ +1 ) - Va(X~ ,~~) = T1 

+ 12 
+ T3,

where

T1 = E~V (X~÷1) 
- V(X~)

T2 = EaV~ (X
a,~ - V~(X~~t~)

13 = EaV~ (X
a 

- E
~V!(

X
~ ,t~+i

).

Let X~ and X~~ denote random variables in the range

[X~ ,X~~1] . Then , via truncated Taylor series expansions

11 = aV’(X~)g(X~) + aV~ (X~)f(X~,~~)

+ 

~ (fO C,a,~~) + ~~~~~~~~~~~~~~~~~~~~~ + g(X~ ))

T2 = -aV ’(X~)f(X~,~~)

______________________________ 
~~~~~
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T3 
= a 

. 
I ~~~~~~~~~~~~~~~~~~ 

- a ~ ~~~~~~~~~~~~~~i=n+l i—n+ l

= 

a: 
~ 

E
~
(Vx(X~

)f(X (f(X~ ,c~ ) + g(X~))

+ i—. ~ E~ (f(X~,~~) + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i=fl+l ‘

+ g(X~)).

Now, (A4)-(A7) yield (note that T2 cancels the second term

of 11; this is the reason for the introduction of V~)

(3.3a) E~V
a(x~+1,~~ +1) - V

a(X~,tn) < -ayV(X~) + a2K [V(X~)+l],

By (A6), V~(x,t ) t  < aK(V(x)+l) and by (3.3a)

(3.3b) E~
ya(X~+l,tn+l) - V

a (X~,tn) < ~aYV
a(X~ ,t~)

+ a2K[Va (X~ ,t )+l].

Let a2K < aY/2 (or, equivalently a < a
0 1/2K). Then (3.3b)

yields

(3.4) E~V
a(X~ ,tn) < exp(~ayn/2)V

a(X~ ,O) + Ka.

Equation (3.4) also holds for V replacing ~
a. Thus, by

(3.4) and (A3) , for any constant K1 and n > Na~ 
a < a0.

_ _ _ _ _ _ _  
_____________ 

--__ I
_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _  - - . - -~ .
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2 K [ exp-aYN /2 ] [V(X ~)+ 1J + Ka
p {Xa QX~ + o(IX~I ) > k1a} 

~ k1a

(3.5)

~ K/k1.

Tightness of (U ~ small a , n > Na) follows from (3.5)

in the following way. Fix 6 > 0. To get t igh tness  we need a

X~
’QX ”

k 6 < ~ such that  P { 
~a ~ > k~ } < 6 , all  a < a 0, n > Na~

There is an > 0 such that  for x ’Qx < E~~~, I o( 1x 1 2)I <

x ’Qx/2. For each real k 3 > 0 , the r e is a k4 (k 3) > 0 such

that x ’Q x > k~ implies V(x)  > k 4 (k 3) and we can choose k 4 ( ’ )

to be a monotonic funct ion .

Let n > Na • By ( 3 . 5 )  (r ecall tha t K m ight  have a different

value in each usage) .

P {X~~ QX~ /2 a > k1} < K/k 1 + P{Xa QX~ > e }

< K/k r 
+ P {V(X ~ ) > k4 (c 0 ) }  K/ k 1 + Ka/k 4 (c 0 ) .

Choose k1 such that K/k 1 = 6/ 2 .  If a < I 6k4(E 0)/2K, then

the right hand side is < 6. If  a0 > a > I, note that for any
k >  0

Xa ’QXa Xa ’QXa

~~ 
11

a ~ > k } < P( ‘~ > k} < P{V(X~) > k 4 (Ik) }

< Ka/k 4 (Ik ) < Ka 0/k 4 (Ik) .

Now choose k2 such that Ka0/k 4(1k2) < 6. F ina l ly ,  let

k 6 = max(k 1, k 2 ) .  Q. E . D .  

—-
~~~~~~

-. - —‘- - - -- - —-~~~~ --~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Remarks

“
I

(i) In a practical implementation of the algorithm (1.1)

an might not be chosen to be constant , but might be allowed to

decrease to some value a > 0 by iteration number Na~ 
where

Na will be chosen such that EIX~ I
2 Ka , and a~ will remain

at value a thereafter. Under our conditions , we can , in fact,

prove that {X~//ç} is tight. But if we are only interested in

the “tail” of {X~}, we can often assume that the initial condition

error is commensurate with the value of a (i.e., EIX~ I
2 

< Ka).

We might also be more concerned with the ability of the algorithm

to track changes (e.g., the chang i~,g system parameters in the

identification example (Section 7), than with the transient errors.

Then we only need look at the ‘t errors ’t U~ for large n (say ,

n > N a) onc e the transient  errors due to the initial condition
have been “dissipated” .

( ii)  Stochastic approximation (1 .2 )  with a~ -‘- 0. Ag ain ,

suppose without loss of generality that the origin is the unique

asymptotically stable point of * = g(x) . Let a~ =

~ e (0,1]. Then the method of Theorem 1 can be used to show

tightness of {X~//ç, n > 0) , without the (usually required)

assumption that X~ 0 w.p.l. To do this we first define
n- i

tn = 1 a
~ 

and V1(x9 t~) = 
~~
ajEnV~

(x)f(x,
~ i), where E~

denotes the expectation conditioned on 
~~~~~~~

, i < n. Then u~ider

(Al) - (AS) and obvious analogs of (A6) - (A7) (the a under the

summation is replaced by a1 and that on the right hand side is

f



replaced by a ) {X //ã’ , n > 0) can be shown to be tight.

Set V0 (x , t~ ) V( ’x) + V1 (x ,t~ ) .

In order to prove the tightness , we derive the inequality (via

the method of Theorem 1).

- V°(X~~t~) < -ya~V(X~) + a~K [V(X~) + 1]

and then continue according to the scheme in Theorem 1 using (the

analog of (3.4))

0 n-i n-i 2 2-
‘ 

EV (X ,t ) < [exp-yt /2]V (X~,0) + K 
~ Tf (14 a. + Ka.)a.,n n i=0 ‘ = i + l  ~ 1

and then show that the above right side is bounded above by Ka~ .

This result is important because the proof of tightness of

{X~/1iT} is the basic problem in rate of convergence results for

stochastic approximations. If tightness of {Xn//~~
} is known ,

then the rate of cenvergence proofs in [1], [3], [9] all go through

with virtually no changes without using the assumption that

o E 0 w.p.1.

(iii) Stochastic approximation, additive noise. Continue

with the situation in the last paragraph , but let f(x,F~) = F~, the

classical Robbins-Monro case. Then (A6)- (A7) are particularly

simple. There are adaptations to the Kiefer-Wolfowitz case , where

cj = C/(i+l)T, a1 
= A/(i+l)~~, 2y<~~, y > 0, and {c~} is the

finite difference coefficient sequence. Then the normalizing

sequence is {/a’/c~} rather than {/~~} or

IhL 
--

-
-

~~~~~~~~~~~

- - - --- - - - -  
•

~

— ‘—----—

~

-— ---

~

p 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. The Main Rate of Convergence Result

‘
a-

In this section, we let 6 rather than 0 denote the

stable point of * = g(x), and introduce the additional assumptions

(A8)-(Ai2) below . Thus, we use LJ~ = 6X~ //~ , where = (X~-0).

For each a > 0 , define the process Ua ( .)  by U a
(O) = U~

and for each integer i , Ua(t) = U~ +N in Eia , ia+a) . We will

show that Ua(.) converges weakly in Dr [O,CO) to the solution

to the Gauss-Markov process U(”):

(5.1) dU = iTUdt + R1”2dB , U(0) = weak limit of {Ua(O)},

where H = 
~~(°). B(

0) is a standard Wiener process and R is

defined by (see (A9) below)

R = lim ~ R
a(~),

a+0 -
~~~~

where

Ra(l) = E f ( 0,~ 7)f’(0,~~~~1).

Also , if aNa ÷ as a + 0 , then the weak l imit  of {U a ( . ) }

is the stationary solution to (5.1).

Suppose that Ua(.) does not converge weakly to U(s) in

Dr (O ,~~) .  Then there is a sequence {ak} of positive numbers

which goes to zero as fast  as we wish and a T < such that

u k(.) does not converge weakly to U(•) in D”[O ,T] . Thus,

L
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it su f f i ce s  to show convergence of ~ 
k ( . )  in D~

’ [O , T] for  an

a rb i t ra ry  1, and for  a sequence {a k } which goes to zero f a s t

enough , but is o therwise  a rb i t r a ry . We wi l l  set the problem up

s imi la r ly  to the way it was set up in [1] , so that the resu l t s

of that reference can be used whenever possible.

Th e fol lowing assumptions are required (analogous to (A3a)

of [ 1]) .  Define m a ( t )  = max {i :  ai < t }. Af te r  s ta t ing  the

condit ions , we comment on thei r  reasonableness .

A8 . There is a T 1 > 0 such that

m a(tN +t)
~~l

max a~ ~~~~~~~~~ ~ ~~~~~ 
+ 0

0<t < T 1 i=rn a(tN ) 1

as a ÷ 0 , for each ~ > 0 , uni formly  in N.

A9. Def ine h~ = f ( O ,~~~) .  Th en {h~ } is s ta t ionary  for

each a. Define Ra (~) = Eh~ (h~~~ ) ’ . Then Ra 
~~Ra (~ ) ~

absolutely summable and the sum converges uni formly  in a.  There
• • ais a matr ix  R such that R -‘- R as a -‘- 0.

AlO.  Def ine p~~(i) = sup 
~~~~~~~~~~~~~~~~~ 

- Ra ( R ) 1 2 . Then

I (P~ ( i) )~~
’2 

< ~~~~, where the sum converges un i fo rmly  in a.
i=0

All. Define ~a( f) = sup E l~
’2

IE aha+ .I 2, i > 0. Then
k>0 1

I (p~~(i))
1”2 < ~~ , where the sum converges uniformly in a.

i=0

A12. 
~~~~~~~~ 

+ Ig~~(x)i < K.

1 -
‘T’T . :‘ TT’TTT ’.T..:~~~~~~ ~~~~~~ 

T:...~ :, .~... ,, , . ,~~~~~~~~ - ‘ -~ 
--
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Remarks on (A8)-(A12). The conditions do not seem to be

particularly strong . Except for the boundeiness of (~~ }, they

are basically the conditions used in [1] , adapted to the present

case.

Let {~~} be a $-mixing process in the sense of [101 with

! •~ ‘4 < ~, where does not depend on a. Then (A9)-(All)

hold. Condition (A3b) of [11 always holds if the noise {~~} was

bounded (set t = 0 there).

Define k~ = 

~~~~~~~ 
let there be an such that

IEk~k~~~ < for all j and (small) a > 0, and define

= ! Then by a Mensov-Rademacher type estimate ([3], p. 98),

there is a K (depending on R) such that ,for each T1 > 0

ma(tN+t)~
l P

a2E max 
- — 

k~ I
2 

< Ka2(ma(tN+Tl)~
ma(tN)) log~4(m~(t~+T1)t<T1 

r_m
a(tN)

- ffla(tNfl

< T1K a log~4T1/a < K1a log~a

which implies (A8). Other examples satisfying (A8) appear in [3]

Theorem 2. Assume (Al) -.(A].2). Then {Ua (~ ) } converges

weakly in DT(O,00) to the U(s) of (5.1). 
~~ 

Na is such that

aNa ÷ ~, then U(0) has the stationary distribution of U(t).

Proof. Fix I > 0. Let {c~) and ak denote sequences of

positive numbers such that ! ~ < 
~
, ak + 0, and (see (A8))

— — 
- 

--.•,‘-.- - “ . —--j ’ 
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(5.2) 1 ka (~k) 
< 

~~~

If (A8) holds for some T~, then it holds for all T
1
, so we can suppose

that I~ = I. By the discussion at the beginning of the section

it is enough to prove the theorem for ~.J ( .) } .

N+n- 1
Part 1. Define /~ f(O ,~~) ówa, and W~ ~ &N~ and

‘=N ~
let Wa(.) denote the function on (0,T] which equals

W~ on [an,an+a). By a truncated Taylor series expansion
a,n

= [I+ag~ (e)+af~ (O ,~~ ))oX~

+ af(6,~~~) + aB 1 (G(X ~ ) , 6X~ )6X~

[I+aH~ ]6X~ + a f (6 ,~~~) + aY~

where B1(G(X~ ) , 6X~ ) is a mat r ix  valued b i l inear  form in

G(X~ ) and 6X~ , and the elements of G(X ~ ) are components of

the second derivatives of f ( x ,~~~) + g(x) evaluated at some point

in the interval [t~,X~ ] .  H~ is defined in the obvious manner .

Thus

(5 .3) U~~ 1 = [I+ aH ]U ~ + 6Wa + /~ 1~ .

~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~ 
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Define 
N+~~ l~~ 

Y~ and let ra ( .)  denote the

function on [0 ,T] which equals r~ ,n on [an,an+a).

NDefine the function C~ (a) by CN+l (a) = I and for

= ~~~~ (I + aH~ ] = ( J + aH ~~~ ) ... (I+ aH~ +~ +1) .

By iterating (5 .3)  and doing a summation by parts , we get

(5.4), just as (3.6) of El] was obtained .

a ,,N+n~ ., a 
+ ~,N+ n~ a 

+UN+n+i 
- “N I,a,IUN ‘

~N+l~~N ,n+l N,n+l

(5.4)

- + (F~~~~ 1 
- r
~~~

)]

Part 2. We now argue that

m (tN+t+s)(5 .5)  Cm ( t +s) (a k ) exp flt on [0 ,1]

uniformly w.p . 1 , as k ÷ ~ , for any fixed N or sequence N +

as k ÷ ~ . The l imit  result (5 .5)  follows from [1] , Lemma 2 ,when

we make the fol lowing ident i f ica t ion of our {a k } with the (a k )

in [1], Lemma 2.  To avoid confusion write the {ak} of (1) as {a k )- .

Then set the first (I/a 1] of the {ä n ) equal to our a1, the

next I/a2 of the {an } equal to our a2, etc. Then (A8),

(5.2) and the Borel-Cantelli Lemma imply (A3) of [1], hence

also its Lemma 2 and (5.5). 

— 
—--~—-~~~ 

--

— - TA
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a kPart  3. As in [ 1] ,  Theor em 2 , ( A 9 -A i i )  im ply tha t  {W ( ‘ ) }

converges weakly to a Wiener process W(-) with infinitesimal co-

variance R;  i . e . ,  W ( t ) R~”2B ( t ) ,  where B ( • )  is a s tandard  Wi ene r

process.

(5 .6)  {r k ( )  } converges weakly to the zero process as

k —‘

then the proof is completed via the arguments of [11 , Theorem 2 ,
part 3, and we wi l l  only prove the desired weak convergence (S .6 ) .
The purpose of the argument in El], Theorem 2, part 3,is simply to

show that the in (S.4) can be replaced by 
~~ (°).  With this

replacement and the convergence of {LJ~} and {Wa(.), ra(.)},

(5.1) follows from (5.4) and (5.5).

Let Mk denote ET/ak], and Nk = N . In view of theak
properties of {y~}, (5.6) holds if (5.7) does

N
k
+M
k-l

(5.7) PC/~~ ~ > c} ÷ 0 as k ~, each c > 0.
i=N k

If V(.), the Liapunov f u n c t i o n  of Theorem 1, is quadra tic , then ”
a 2EIX,)~ . 1 < Ka 1 by Theorem 1, and (5.7) holds by an applica tion of

-

Chebychev ’s inequality. We now prove it in the general case.

Recall from Theorem 1 that there is a K such that for

n > Na and the ya of The or em 1 ,

‘Recall the criterion for Na given in the first sentence of

Section 3 k
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EV(X~) < Ka, EVa (X~ ,t~)I < Ka ,

(5.8) Va (x ,tn) > -Ka ,

E
~

V (X
~+1a

tn+i) < (l~ya+Ka
Z)Va (X~,t~) + a 2 K.

Let K be fixed at its above value henceforth in this proof,

and let n > Na and n - Na 
< T/a and let ‘a ’ be small enough

such tha t

-Ia + Ka 2 < 0, Ka < 1, a < 1.

Define the random variables La by

La (X~ ,fl) = Va (X~ , tn ) + aK + (T
~

a(n
~
Na) ) a 314K.

Then La (X~ ,fl) > 0. By (5.8), we have

E~L
a (X~~1,fl+1) < (l-Ya+Ka 2)V

~
(X
~
,tn) + aK

(5.9a) 3’4 2
+ (T+aN - (n + l ) a ) K a  ‘ + Ka

and, consequently,

E~L
a(x~~1,n+1) - La (X~ ,fl) < -

< (-ya+Ka )V (X~~t~) + Ka - Ka < 0.

Thus {L a (X~ ,fl) } is a non-negative supermartingale for each

small a. Thus, there is a real K1 such that

Li 
_ _  

_ _ _ _ _ _ _ _ _ _
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(5.10) P( sup L a (X~~,~~) > a518) < ELa (X~ ,Nk) / a 5’8
Nk<i<Nk+Mk~

l k

< K(a + a 3”4 )/ a 5”8 = O(a ”8) .

The re is a K 2 < such that if La (X~ ,fl) < a~~
”8 , then

V(X~ ) < K 2 a 5
~
’8 . We can suppose tha t  a is small  enough so t h a t

V(x)  < K 2 a 5
~
’8 imp l ies  tha t  V ( x )  > x ’Qx/ 2, and Va(X,fl) >

x ’Qx/2 - aK. Then , for small a and La (X~~, fl) < a5’~
8,

(5.11) 0 < La (X~ , f l )  = O(a 3”4) +

where > (X~ ) ’Q X ~ / 2 .  Equat ion ( 5 . 7 )  fo l lows from (5 .10)  and

(S. 11),  since there  is a real K 0 such that  w i th  p r o b a b i l i t y

1 - O(a l/ 8 ) ,

N +M -lk~ k (X~ ) ’ Q X~ /2  < v’I (T/a)(K0a
5’8) = O(a~~

8). Q.E.D.
i=Nk 

1

6. Adaptive Systems - Examples

We will describe very briefly two of the more important

systems which fall into our framework. Let ~~~~~~ and {y~ }

denote the input and output sequences , resp., of the linear system

(6.1) y~ = - [c 1y~~~1 
+ + CkYf l k] +(b 0u + ... + b~u~~~ 1 +

Suppose that the system is asymptotically stable when u~ E 0, i~~ 0.

Define

•

~ 

_ _ _ _ _ _
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0 = (cl,...,ck,bO,...,b~)’,

and let {u~ } be a zero mean random sequence which is independent

of the zero mean sequence {u~}. A common álgorithm for estimating

o is

(6 .2)  X~~,1 = X~ + an [y n - X
~~n

]Pn~

where X~ is the nth estimate of O~ Under various cond i t ions

(including an 
÷ 0) X~ ÷ 0 w.p .l [2] , [3] . In practice , due to

extraneous noise , robustness considerations , or model uncertainties ,

it is common for either a~ + a > 0 or a~ E a, a constant , per-

haps a matrix. The case where 0 varies with time and a~ a

is dealt with in detail in the next section.

Next , consider a similar algorithm which is very useful in

adaptive communications theory . Let {S~~}~ i = 1,2 and

i = 1,2, represent stationary signal and noise sequences ,

resp . {S~1} and {S~2) ({Nni) and {Nn2}~ 
resp.) are related

in the sense that they are signal (noise, resp.) processes appear-

ing at the inputs to different antennas, but are from the same

transmitting source. Let = Snl + N~ 1 and u~ = Sn2 + N~ 2

denote the actual inputs to the two antennas. Let k be a fixed

integer and set = (un,...,un k )’. It is desired to f ind the

weight vector ~ which is the minimiz ing  X in the expression

E(y~ - X’IP~]
2. The motivation behind this desire is that (roughly

speaking) if the power (in the communication theory sense) in the

(N ni } sequences is greater  than that  in the {S
~~~

} sequences , then



- 2 1 -

under reasonable conditions the ratio of signal to noise power in the

-
~~~~~~~ “output” difference sequence {y~ -~~’~~~} is essen tially the inverse

of that in the input sequence {y~}. This is obviously a desirable

resu l t .  See [51 for  the s imple ca lcu la t ion , al ong w i t h  a

discussion of some u se fu l  app l i ca t i ons .

The algori thm (6.2) is often used to calculate the optimum X

recursively, when a~ a. But , in this context , (6.2) is not well

understood . U s u a l l y ,  it is only proved tha t EX n converg es .

Exceptions to this are the work of Davisson [7] (with rn-dependent

s ta t ionary  Gauss ian  sequences as inputs)  and Senne [6] (where  the

stationary inputs satisfy a type of mixing condition), where it

is proved that E IX~ -!l
2 0 as a 0 . The me thod of Sec t ion 8

exp loi ts  the technique  of the last sec tion in order to ge t a more

complete p ic ture  in the general case where a is small and the

processes are n o n - s t a t i o n a r y ,  an important  case which ac tua l ly

jus ti f ies  the use of the adap t ive algori thm , bu t which has no t

yet been dealt with in the literature.

7. The Non-Stationary Identification Problem (6.1)

In this section , the parameter 0 in (6.1)  is allowed to

vary with  time , and we let denote its value at time n. Since

the variations in {0~ } affect the statistics of {~
p
~ }, the

identification problem is more complicated than the adaptive

communications problem , and we consider only the former case.

Assume that {u~~i~~} are bounded. Non-stationarities due to the

0a variations are more difficult to treat than the effects of
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~~~~~

non-stationary 
~~~~~~~ 

In order to concentrate on the more

important effects and minimize the notation , we assume tha t ~~~~~~

i s sta tionary . Also {u~ } is assumed to be zero mean , and in-

dependent of {u~} and Eu~ 0.

We now model the time variations . Let 0 ( . )  deno te a un i-

formly continuous R~~
k
~~ valued function on [0 ,cc) , wi th values

in a bounded set S. Suppose that the parameter~ 6~ takes the

value 0(an). To see the reasonableness of the model note that

the rate of change of the 0a must go to zero in some sense as

a + 0, for otherwise tracking would not be possible. 0(-.) could

be a random process , but no generality is gained by that; since

we t reat  one sample func tion at a time anyway. The uni form

cont inui ty  condit ion is used to assure that the ~y~} sequence has

a certain s t ab i l i ty  property on [0,~ ). We want to avoid 0(.)

ge t t ing  “ wilder and wilder ” as t +~~~. It is not needed if we are

concern ed with some “fin ite” interval {n : na < 1) only.

We could allow {0~~} to be a random sequence for each a.

Even then , its rate of chang e must s t i l l  be proport ional  to a in

some sense (or to a frac tional power of a; but then the ~~~~~
terms play no role in the l imi t  as a + 0 ) .  In any case , we want

an (l imit )  equation which yields the limit of the behavior of the

normal ized interpolat ion of the error (X~ - O~~) p rocess in terms

of the limit of the parameter process ,, so that the pr ec ise

relationship can be seen. Our scheme is a natural way t~ get this.

‘The parameter 0~ is the value of (cl,...,ck,bo,...,b~
)’ at

time n. Then the c1,b3 
are components of (hence functions of)

at time n.

___________________________________
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The main object is to get some informat ion  on the properties

of {u~} when a is small .  We might  be interested , for example ,

in an approx imation to the d is t r ibut ion of some continuous funct ion

of {U~~, na < I) .  To get this , it makes sense to paramet r ize  the

problem so that we can get a l imit  result (as a + 0) which wil l

serve as the approximation to the {U~ } , and from which the approxi-

mation to the distributions of functions can be obtained (particularly

if the convergence is in the sense of weak convergence). If we allow

a + 0 without simultaneously slowing down the rate of variation of

then obviously no limit result is possible , in general. Thus,

to even discuss the behavior for small a , we must al low the 6 a

to depend on a. As mentioned above , there are several ways in which

this can be done . Our choice allows a relatively s imple exhibi t ion

of the structure that the limit would have in a wide variety of cases

(where , perhap s , 0( ’ ) might be a l imit  in some sense of the

sequence of parameter variation functions o a ( . ) ,  where e a (~ ) -

on (an ,an+a) ) .

The problem is set up in the next subsection.

~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~i--.’- - - - - - ‘ .
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The problem is formulated and some term s are defined in

Subsection 7.1. Subsection 7.2 obtains estimates concerning the

dependence of y~~(0)  on e , and Subsections 7 .3  and 7 . 4  ob tain a

limi t theorem for the interpolation of a deterministic centering

sequence{V} , and ti ghtness of {U~ } = ((X~ -0~ -V~)/v’~}, resp. In

subsection 7.5 , the C~ (a) are approximated by an exponential

function and in Subsection 7.6, Theorem 5 gives the appropriate

Wiener process limits and the convergence theorem~~r (Ua(.fl.

‘.l. Formulation of the problem. Let {y ~~~~ (t ~~) ,~~~~~~~~(b)} denote the

output and output-input sequence when ~ for all n; then ~s~ (0) 
=

{-y ~~~1( e ) , . .  ~~~~~~~~~~~~~~~~~~~~~~~~~~ By (Bl)  below , these sequences

are second order stationary for each 0 C S. Define

R(~) = i ) ~~~~~( ’ i ) ,  Rt 
= R(e(t)) and = ~~~~~ the true co-

var iance .  Set Y~ = - 3~~, 60~ = 0 (an+a) - 0 (an) , ~~ 
=

[Ra9 VI , ~~~~ 
= [R(0) - 

~~~~~~~~~~~ 
= ~~~~~ Y~ 

= 

~ n~ n 
-

and F ( 6 )  = Eii~~i~~(0). Except for  the above def ined terms , the

superscr ipt  “a” w i l l  n o r m a l l y  be omitted for notational convenience ,

in particular on ~~~~~~~ and below . We have

= X~ + a((8~ )’~P~ + - X~4J n ] 1
~
)
n

Y = y - - aR5Y + a~~ Y + a~ ~pn+l n n n n  n n  n n

Define  the sequence {‘Y~) by

—
~~~~~~~~~~~

-—-—-
~~~~~~~~

— - -- ——-~~~-- -- — — __
~~~ _ I _
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(7 . l a )  7n+l  = 7 - - aR + aF~ , Y0 Y0,

and define 
~n = 

~n - 7. Then

(7.lb) ‘
~n+l = - aR~Y n + a~~~(Y~ +7~ ) + aY~ , 

~~~~~ 

= 0.

is the “noiseless” part of 
~n’ 

and contains the effects of

the initial conditions. It is most convenient to work with the form

= + 7n~ 
This avoids the requirement of Section 3 (due to

the effects of the initial condition) that n > N a~ F ina l ly ,

define {Ua} = {Y~ //~}, the sequence whose convergence we will

ultimately deal with.

In order to exploit the stability properties of (6.1), it

is convenient to work with (6.1) in state variable form. To set

this up, define t
~n 

= ~~~~~~~~~~~~ and Zn =

Recall that, by definition , 0a O (an) = value of {c l , . . ., ck ,

b0,...,b2.}’ at time n, a (k + 2. + 1) vector.  For any S valued

parameter 0 , we define

0 1 0 
— 

0 
— 

0

A( 0 )  = . , B(0) = : =

1 0 0

C k
( O )  ,-c 1 (O ) b0(e),...,b~ (6)

D = [0 , . . . ,0 , l ] .

A
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a 
~~ defir~e A 1 

= A(0~~) ,  B
~ 

= B(0a). Then Z~~1 
= A

~
z
~ 

+

pAl B
1
ti~ + C~~ , ‘i DZ~ ÷1. Define Z.(0) = 

~~~~~~~~~~~~~~~~~~~~
Then

(~ .2) Z~~1(e) = A(0)Z
~
(O) + B(e)ii

~ 
+ ~~~ y~

(0) = DZ~~ 1(0) .

W r i te E~ for the expectation conditioned on ~~~~~~ i < n.

The f o l l o w i n g  a s sumpt ions  are requi red .

(Bi )  A~ (0)I -
~ 0 as n -

~ ~, uniformly for 0 C S.

(B2) - R~ fl=  ~~ i E s a~ bound ed uni formly ~ in

(B3) There is a q1 > 0 such that R(0)  - q11 is non-

negative definite, for all 0 C S.

(B4)  .~~~IE n
(I
~
)
i~
1
i 

- = ~~ I E ~ Y~~I bounded uni formly

in n ,W .

(B2) and (B4) are not restrictive . Under (Bi), they hold

under a ~ -mixing condition (see [10] for the de f in i t ion)  on

{u ~~ M~~} w i t h  ~~ < 
~~~~. (B4) holds if the {u

~
} are mutua l ly

independent .

7.2. Some preparatory estimates. Since the statistics of

the 
~~~(e) are easier  to get than those of the 4i~~, we show that

can be well approximated by lP
~
(0
~
), uniformly in i , for

smal l  a.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Let P ( 0 )  denote the unique symmetr ic  pos i t ive  d e f i n i t e  Liapunov

matr ix  sat isf ying A ’( e ) P ( O ) A ( O ) - P(0) = -I . By (81),  there are

0 < P1 
< P2 

< such that

(7 .3 )  p
11 < P ( 0 )  < for all 0 C S.

+

We now obtain a series of results concerning the closeness of

R( 0~~) to and Z~~~1(0~~) to Z n+l~ 
Recall  tha t  Z~~(0~~) is

the value obtained from ( 7 . 2 ) ,  when the 0 in ( 7 . 2 )  is held f ixed

at for all i ( i . e. ,  A ( U )  = A~ 4 B(0) = Ba) .  We can w r it e

(7.4) Z~~1 =

For small a , the sum is ( 7 . 4 )  converges un i fo rmly  by v i r t u e  of

the s tabi l i ty  assumption and i ts consequence ( 7 . 3 ) .  Indeed , by

(7 .3 )  and the fact  that  I A ( 6~+1) 
- A(0~~) t  ÷0 unif or mly in n as

a + 0, there are a0 > 0, c > 0, K1 < ~ , such that (see also [11] for

a similar estimate)

(7.5a) IA n • . .  A~+1I < K1
(l-cf1 3 , all n ,j, for a < a0.

By (Bl), we can suppose that K1,C , are chosen such that (7.5b) also

holds.

(7.5b) lA~I <

The following approximation result is the basis of much of the

rest of the development .

Recall that R(0~) is the covariance ~~~~~~~~~~~~~ 
i.e., the

parameter 0 is held fixed at 0
• n

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~mjna_3.. Under the stability assumption (Bl),

sup~ Z~~ 1 
- Z~~+1(6~~)I 0 as a ÷ 0.

Proof. Let Ma denote an integer whose specif ic value wi l l  be

selected below . The var ia t ions  in the B~ cause no problem in

the proof and neither does {C1~A~ }. So, in order to simplify the

proof set B~ B , a constant , and C = 0 ;  i . e . ,  the b~ 
components

of 0 ( . )  are constant . Then

n -M
- Z~ +1(0~~) I  I~~~~~( A • ~~•A n M + l )An M  A

J
B~ J~

fl~M N n -M -j
( 7 . 6 )  + ~ I ( A~ ) a (A) BiIJ I

+ IA ... A. - A~~~
3 I I B U .I .

j=n-M +l fl j+l n

By ( 7 . 5 ) ,  there is a real K (not depending on a or Ma )

such that the f i r s t  two terms of (7 .6)  are each bounded in norm by
M

K(l-c) a1~ . We will next get a bound on the third term . In (7.6),

the value of the time parameter n plays no special role and it

is enough for us to show that  (7 .7)  tends to zero uniformly in

A0 = A( 0 (0))  as a ÷ 0.

M - l
(7.7) £ IA 0 ... A. - A~~’I ,

j=0

In (7.7), A
~ 

takes the form A~ = A0 + 6~ , and all that we assume on

is tha t there is a real K 0 such that  

~~ --~~~ - - .~~~—----~~~~~~~~ -~~~~~~~ -~~ ~~~~~~~ ---
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1 6 . 1  < K010(i a)  - 0(0)1. It is convenient to work in a matrix

PAl norm I I which might depend on 0 (0) but where there are real

K 2 K 3, independent of 0 ( 0 ) ,  such that I~ I < K31 . 1 0, I I
~~~~ 

< K2$ I .  
(

In par ticu lar def ine IA I~ - sup x ’A’P(O(O))Ax . Then 1A 01 0 < 1.

By (7.3), K2,K3 exist and we can also suppose that ‘6 i ’ 0 
<

K210(ia) - 0(0)). For the 3
tfl term of (7.7) in the I~~~~~~ )

0 
norm , we have

IA 0(A0+61)...(A0+6~) - A~~~ I 0 ~ A0~~ j l 6~ Io

+ 
I A

0
l~~~~~~~~~~ 

~2~ i1~~
j
1
6j
2 

I~ 
+ ... + lA 0I 0l 6 1...6~ I 0.

Let ~ = K sup l O ( s ) - 0(0)1. Then a crude upper bound on -the
2 s<M a

above is

IA o I { (
~
)( IA~ I0

) + 

~~~~~~~~ 
+ ... +

1 1 )1 
+ A 

- l}.
0 1 01 0

and (7.7) satisfies

(7.8) 1 ( 7 . 7) 1 5 K3 ~~
iA 0Ir{(l + 

~~
4
E~

3 
- 1).

Now choose Ma ÷ ~ as a + 0 in such a way that aMa (hence 
~

goes to zero. Then, since sup IA(e (ofl l < 1, the right side of
M 0(0) 0

(7.8) and (l-e )  a both tend to zero uniformly in 0(0) C S, as

a ÷ 0. Q.E.D.

~ 

_ _  _ _ _ _ _ _



-29-

Similar proofs yield the following corollaries.

coroliazy J.~ Assume (Bl). Let Maa 
-

~ 0 and Ma 
÷ 

~

a ÷ 0 and let 0 denote the set 4 0 ( u ) : na - M a  < u < na + Maa }.

Then

(7.9) sup ~~~~~~~~ - Z~+1 (O)I ÷ 0

as a -‘- 0, uniformly in n.

Corollary_2. Assume ( B l ) ,  (B3) . Then )R(e~) - R~ I + 0

uniformly in n as a 0. Also there are K < ~, C~~ > 0 such

that for 11 > j

(7.10) I (I-aR(~~
) ) ( . I-aR (0~~.l

) )  ... (I-aR(~~+1))l < K(l-a€ 0)~~
3

for all n , j  and small a. The funct ion Rt 
= R(0(t)) is

continuous. The function F(.) is continuous and F~ + F(0(t)),

uniformly  in t , as a 0 , n ÷ if an is held equal to t .

Proof. The second asser t ion is a consequence of the continuity

of e(-.), and (83) and ( 7 . 9 ) . The rest are consequences of Lemma 1,

and Corollary 1 and the details are omitted.

7.3. A limit theorem for {7.}. We next turn to the treat-

ment of the deterministic sequence {7~}. Let ~(t,s), t > s,
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denote the fundamental solution of the linear equation ± =

and let ya(.) denote the piecewise constant function on (0 ,~)

with values ya(t) = on [an ,an+a), n > 0.

Lemma 2. Assume (Bl), (B3). Then 
~
7n~ 

is uniformly

bounded. If the in (7.12) are replaced by R(0~), then the

difference between 7n+l and the new right hand side converges to

zero uniformly in_ n, as a ÷ 0. As a ÷0 , ya(.) converges

uniformly on bounded intervals to the function Y(.) defined bi

(7.lla) 7(t) = ~(t,0)7(0) - J ~(t,s)dO~ + 
J~~

(t,s)F(e(s))ds

= ~~t ,0)7(0) - $(t,0)(0(t) - 0(0))

- J ~(t,s)R (6(t) - 0(s))ds
0

ç t
+ 

I ~(t,s)F(0(s))ds,
- 

J O

which is the unique solution to the equation

(7.llb) d7(t) — -RtY(t)dt 
- de(t) + F(e(t))dt.

Proof. For the first assertion we write the solution to

(7.la) in the form (using a summation by parts to get the second

equation) 
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( 7 . 1 2 )  
~n +l  = fl (I-a~~)7O

- fl (I-a~~ )â0~ + fJ (I-a~~)a~?i=0 j=i+l 3 i=0  j = i + l  1 
1

n 
- 

n
= H (I-aR ~)Y0 - fl (I-aRe ) (O(an+a) - 0(0)]

i=O 1 i=l 1

n n
- a fl ( I a ~~)~~~(6(na+a) - O (ia)] +

i=l j=i+l ~ 1

n n . -

+ 
~ f l  (I~ aR a )aF~~.

i=0 j=i+l

Now use Corollary 2 together with the boundedness of e(.).

The second assertion follows from Corollary 2. The last

assertion then follows by letting a ÷ 0, n ÷ ~, an = t, in (7.12)

and noting that for t > s

m Ct)a
11 (I- aR(0~)) ÷~~(t,s), t >

i=ma(s) 
1

un iforml y on bounded s,t intervals. Q.E.D.

7.4. Tightness of {U~). With the preparatory results

available , we proceed to the main result, by following the pattern

of development in Theorem 1.

F ,  

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  

t 
-

~

_ i  
~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~

-
~~~~~~ 

-
~~~~~~~~~~ 

j
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Theorem 3. Under (Bl)-(84), {U~~, n > 0, small a) is tight.

In particular (since Y0 = U~ 0), EIY~ I
2 

< Ka.

Proof. The proof is quite similar to that of Theorem 1 and

we only remark on the basic set up. The Liapunov functions of

Theorem 1 will be V(~) = 
~
‘)~ 

=

= 2~ ’ 
~~~~~~~ 

+ 2~ ’ 
~~
En8~

7j + 2~ ’

= V (~) + aV~(~ ,t~).

By virtue of (B2) and (B4), the sums are uniformly bounded and,

as required by Theorem 1,

(7.13) lv~(i~t~) l  < K(V (~) + 1).

Now , by applying the mechanisms of the proof of Theorem 1

and using the boundedness of 
~
17
~

1
~ 

yields

(7.14) En
ya(yn+l,tn+l ) - Va(yn,tn) < -a~~~~Y~ + Ka2 (l+JY ~ )

2) .

Since is positive definite , uniformly in (small a) (Corollary 2

and (B3)), there is a I > 0 such that YJ R~Y~ 
> IV(Y~ ) and the

method of Theorem 1 (together with the uniform positive definiteness

of R~) yields the desired tightness. Q.E.D.

—— - -

~

--

~

-— - - - -

~

: ~~~~ ~~~~ I
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7.5. Approximating C~ (a) by an exponential. Recall the

function C~ (a) introduced below (5.3). Here 
~~~~~~~~~~~~~~ 

is the

Ha of (5.3). We can write

(7.15) U~~1 = [I+aH~]U~ + /~ ~~7~ + /~

The estimate (7.16) is needed in the proof of the next theorem .

By (B2), (B4), (the limits of the sums are ma(s),ma(t)~
l)

EI~ 8~I
2 

< 2E £ I~~I IE~+1 ~~~~~~~~~~~~~~~~~ 
< K (t-s)/a.

1 1 3> 1

By this estimate and Chebychev ’s inequality there is a real K

such that

ma ( t )~~l
(7.16) P{aI 

~ 
> C) < Ka(t-s)/C2.

i=ma(s) 
1

Theorem 4. Under (Bl)-(B4)

m ( t )
Cm
:

(s) (a) ÷ ‘~(t , s)

uniformly on bounded s,t intervals if a + 0 fast enough; in

particular , through any sequence {ak} where E ak < ~~~~•

k

Proof. The proof is very similar to that of Theorem 2,

Part 2. First , fix t < T, let M denote an integer , and divide
(0 ,tJ into M intervals , each of width 6. Suppose (without loss

j
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of generality) that N = ‘5/a is an integer and ‘5 < 1. The

constants K below do not depend on a , ’5 or on t < T, and

their  values may change from usage to usage. We have

(7 .17)  I C~~~(a)  - (I + a ) )  < a2 
~ I H ~ H~ I1 1

J L2 1

+ .. . + a~~i-i~~~ . .. HaQ~ < KtS2.

(7.17) holds (with the same K) when 0 and N - 1 are replaced by

IN-N and iN , r e sp .,  for any i > 0. Hence ,

NM-lm (t) N-l
i c 0

a (a) - (~ + a ~ Ha) . . , (I + a ~ H~)) < K6.
j = NM - M ~ j = 0  ~

Let {a k } sat isf y ~ ak < ~~~~. Next , we want to show that

NM -l N - i
(7.19) (J + a ~ H~) ... (I + a ~~ H~) -j=NM-M ~ j=O ~

NM-i N -l
(I- a r  fta)~~~ .(I~~~a ~~~~~ ÷ 0

j =NM -M j = 0  ~ 4

uniformly for t C ~i~S: i < T/ 6) w.p.l , as a ÷ 0 through the

sequence {ak}, for each fixed 6 > 0. Owing to the fact that both

ma ( t + u )_ l  
m (t+u )

products (I + a H~) and Cm
a
(t .~ (a) can be made

i=ma(t) 
3 a~

arbitrarily close to the id e n t i t y  by l e t t i ng  u and a be small ,

(7.19) implies that

m a ( t )  m a (t -l  -aJ C 0 (a) - (I-aR ~fl ÷ 0

— ~~~~~~~~~~~~ —- — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ — -
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uni fo rmly  in t < T , w . p . 1 , as a ÷ 0 through {a k )- . To get

pAl ( 7 . 19) ,  we use the es t ima te

M iN-i
(7.20) )(7.l9)) < Ka 

~ 
j ~ E0(a)i= 1 j = i N - N  ~

and , by us ing (7.16)  w i th  ‘5 = (t-s) and M T/~5,

M iN-i
P{E (a) > ~ P{a~ ~ > ctS/T)

0 - i=l j=iN-N 3

< (l)K 6a T 2 
K( 21—) a.

- ‘5 6

Thus ~ P{E (a k ) > C) < and the Borel-Cantelli Lemma and (7.20)
k

implys (7 .19 ) .

F i n a l l y ,  use the fact  that  by Corollary 2 , (7. 19) remains

true when is rep laced by R( 0 ( a j ) )  R( 0~~) and the fact

that

NM-i
fl ( I - a R ( O ( aj ) ) )
jEO

un i fo rmly  in [0 ,1], as a 0 , to complete the pro of .  Q . E . D .

7 .6 .  The Wiener process and the limit theorem for {U ’1( ) }.
Define U a ( .)  as in Section 4 and define W~ and r~ by

n - i  n - i
= /~ .

~~~ ~~~~~~ 
= ,/

~

. j
i — 0  i=0 
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and let Wa ( .)  and ra(.) be the continuous parameter processes

t p  wi th  values W~ and r~ , r e sp . ,  on [an ,an+a) . By solving

(7.15) and doing a par t ia l  summation , we get ( 5 . 4 ) , but where 1J~
is replaced by 0 and all N’s are deleted . The limit result is

given in Theorem S under the addit ional assumptions:

(BS) (i~~ } is a sequenc e of bounded independent and identically

dis tributed random variables with EIA~ = and E~i 1 = 0.

(86) {u~} is a bounded •-mixing process [10] with

mixing rate {4~~} satisfying ~ p~
”2 < ~~~~.

Remark on ( B 5 ) - ( B 6 ) . They are s t ronger  than necessary .

CBS) is used because otherwise F ( 6 )  ~ 0 and it seems point less  to

get a limit theorem for Ua(.), when the Y(’) itself is biased

by F(6(.)). Also, (B5)- (B6) imply (B2) and also that (B4) is

zero.

Theorem 5. Assume (Bl), (B3), (B5), (B6). Then

converges in D2 f 2 . ) [0 ,,0) weakly to a Wiener

proc ess (W( ) r(~)1 whose covariances are

2(7.22a) Coy r ( t )  = a1.’

~ a•t
(7.22b) Coy W(t) = 

~ J E8~(8(v))7(v)7’(v)8~(0(v))dv
£_ _ c o  0

~~

( 7 . 2 2 c) E r ( t ) W ’ ( t )  — 

~ 
j E1A 0*0(6(v))7’(v)~~’(0(v))dv .2.—i 0 £

t L  
_ _ _  

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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{U a ( .) }  converges weakiy in Dk~~~~~ [O ,~~) to the d i f f u s i o n  U ( S )

given by

( 7 . 2 3 )  dU = 
~
RtUd t + dW + dr.

Remarks. (7.22a-c) are well defined . The sequence {M j)
and , for each 0 , {l ~ (c~) ,~~~( 0 ) } , are stationary processes , so the

subscr ip t  0 and 9. in ( 7 . 2 2 b ,c) could be i and i + 2., resp.,

for  any i .  These express ions  are calculated by first calculating

the asympto t i c  moments of {IP~ (O)} needed in ( 7 . 2 2 )  for each 0 .

These are continuous functions of 0 , so (7.22) makes sense. Note

tha t  the covarianc e “increment” at t depends onl y on the para-

meter 0(t), the desired form . Compare (7.22) to the R below

(5.1). They are equivalent if

we use f ( 0 ,~~~) = I~ 
+ ~~~ and ne i ther  the parameters  nor

vary wi th  t ime .

The exact values of the covariances are complicated and one

would not normal ly  want to ca lcula te  them - even for some known

“ tes t”  va r i a t ion  0 ( . ) .  Theorem 5 gives the s t ruc ture  of the l imi t

and indicates  how the variances depend on the unknown func tion .

This , in i t se l f , is u s e f u l .

Proof. Once the asser t ions  concerning convergence to the

Wiener process are shown the proof is completed as indicated

below (5.6) for Theorem 2. Only the assertions concerning the

Wiener processes will be proved . The proof of those assertions

are based on the proof of s imilar  assert ions in Theorem 2 and in
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( E l ] , Theorem 2 ) .  The main changes are due to the n o n-s t a t i o n a r i t y,
,‘P which requires altering (A9)-(All) (resp., (A6)-(A8) of [11).

In our non-stationary and bounded ~~~~~~ case , (AlO) and

(All) should be replaced by: Let h~ = or and def ine

(7.24a) p~~(i) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

> 0, i > 0,

( 7 . 2 4 b )  P~~( i )  = s
~ p I E kh

~ + j I , i > 0.

Then

(7 .24c)  ~ (p~~(j ) ) l/2  
+ ~ (p~~(j ) ) l1’Z <~~~~

where the sums converge uni formly  in a.

By the independence of {i~~}, (7.24) is obvious for

h~ = y
~~. The sequence {~~} is $-mixing with the corresponding

{~ J ) satisf ying ~ 
•~

/2  
< ~, because of ( B 5 ) - ( B 6 )  and the fact

that there are linear F~(.)with uniformly (in n,q) bounded co-

eff ic ients and C
n 

satisf ying I C ~~~~~ I 
< K(l~ C)~ such that

= 

~~~~~~~~~~~~~~~~~ ~•~
1L n..q) 

+ c~ . Consequently , both

{*~} and {8~} are 4 -mixing with the corresponding {4~~} satisfying

! •~./2 < ~~~~. This implies (1.24) for  h~ = ~~~~~~. The

property (7.24) was used in ((l], Parts 1,2 of proof of Theorem 2) ,
m ( t  +t ) - 1

:~ show that’~ 
• 

iç h1 was t igh t  and converged weakly to

In ( 1], m(t)  = max{n: 
~ a1 

< t} and a~ ÷ 0 as i ÷~~ and E a~ = 
~ ;

also the superscript  ‘ a ’ was not used or needed . But the proof can
also be used for  our case , sinc e only ( 7 . 2 4 c )  was used .
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m (tN
+t)-l

a con t inuous mar t ingale , and tha t P’~~~~ h .) 2 is uniformly

• 

m ( t ) 1 1

integrable in N. The same proof can be used when a1 
a.  Thus ,

{wa(.),ra ( . ) }  are t igh t in ~~~~~~~~~~~~~~ and a l l  weak l imi ts are

continuous mar tingale s and {) w a (t f l 2 , )r a(t)1
2, small a) is uni-

formly integrable for each t .

Choose and f i x  a convergen t subsequence and index it by n ,

and le t W( ),r () den ote the l imi t . As we wi l l  see , the l imi t

w i l l  no t depend on the subsequence. Le t q be an arb itrary  integer , an

i < q,  t ,s arbi trary except that s~ < t < t + s, and let g ( ’ )  be

• : a bounded continuous function. Let E t deno te Em ~~~~~~ 

By the weak

convergence and uniform integrability,

(7.25) Eg(~
a(s1),r

a(s~) ,  j~ < q)E~[r
a(t+s) - ra

(t)][ra (t+s) - ra (t) ]t

÷ Eg(W(s~) , r(s
1
) ,  I < q) 

[r(t+s) - r (t) ] [r (t+s) - r(t)]’.

Evaluat ing  the E t i I term and using the independence of the

{ii~~}, yields (limits of the sums are ma(t),ma(t+ s)~
i)

[7.26) E~ [F a(t+ s) - r a (t ) ]  [r a (t+s)  - r a (t ) ]t  = a E t ~ ‘r~ (Y~ )

= a ~

Since lim IE~
P
~~ j 

- i~ 0 as li-m a(t) I + by (85) , (B6) ,

the limit of the right side is the l imit  of ~~~~~ which (in turn)

is the limit of a ~ a~R(0~) which (in turn) equals •

t+s
J~ 

a~R(8 (v) ) dv . Due to the arbitrariness of s~ ,q,g,s,t , we have

that
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E {[r ( t + s )  - r ( t ) ] [ r ( t + s )  - r ( t ) ] ’ )  r (v) ,W ( v ) ,  v t i  =

pAl t+s
= f a~ R( 0 (v ) )dv ,

t

hence that the right side of (7.22a) is the quadratic covariation

of F ( . ) .  Thus r(.) is a Wiener process.  S i m i l a r l y ,  if the

right sides of (7.22b,c) are the quadratic covariation of W()

and the cross quadratic covariation of W(.),r(.), then (W(.),

r(.)) is the asserted Wiener process, and the proof will be

completed .

We now do a similar calculation for Wn(.). We need only

show that (limits of sums are ma(t),ma (t+s)  - 1 unless other-

wise written)

(7.27) aEt ~ 
~

converges to the integral in (7.22b) with limits (t,t+s) in-

stead of (0 ,t). Equation (7.26) equals (use the convention
b

= 0 if b < c)
C

ma(t+s)-L-l
(7.28) 

JO i m ~~(t~~~t~~h 1 1 + 2 .  
8~~9.

m (t+s)- l
+ 

£<0 i=ma(~)+ItI t h h 1
~~~

1I
~

For al l i, 1 + 2. in the range of the above sums, the P-mixing

implies that

L ~~~~~~~~~~~~~ _ _ _ _
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,.

pAl

IE t~~
Y
~7j+9.~~+9.I < KP~~f.

m
a
(t+s)

Since ~ aP~~
2 

+ 0 as L + ~, we may evaluate the limitI 9. l .~.L i=ma(t)
of ( 7 . 2 8 )  by evaluat ing the l imi t  of the inner sums individually as

a ÷ 0, and then summing over 9.. By the same argument which we used

for r a(.) below (7.26), the limit of the 2.th inner sum is the same

as the limit when Et is replaced by E. Furthermore , by Lemma 1

and its Corollaries , t3~ can be replaced by 
~~
(e
~
) without altering

the limit. Upon making these replacements , we see that 9.th inner sum

converges to the 2.th integral in (7.22b) with limits (t,t+s) instead

of (0,t). By the argument used in connection with r(.), this implie
• that W(’) is a Wiener process with the asserted covariance .

We need only show that (7.22c) is the cross-quadratic covariance

between r(.) and- W(.) is (7.22c). The proof of this is the same

) as that just given for W(~) above . The sum is ! rather than
I 1
- 

~~, since ~n 
is independent of y1, i < n , and of and

8~, i < n. Q.E.D.

H 
_ _  

_ 
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